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plexes exhibit a rich, controllable, and potentially useful range 
of chemistry. These studies also suggest that it may be possible 
to generate elusive isoelectronic Zr=O complexes, which are likely 
to be even more reactive than their imido analogues. The aza-
metallacyclobutenes 4-6 can be viewed as 1,3-enamine dianion 
synthons, which raises the possibility of developing applications 
of this chemistry to organic synthesis through selective insertion 
of unsaturated molecules into the Zr-N or Zr-C bonds of these 
complexes. Efforts aimed at achieving these goals are under way. 
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Over the past decade, the activation of carbon-hydrogen bonds 
by transition-metal complexes has undergone intense investigation.1 

Alkane dehydrogenations,2 discrete RH oxidative additions,3 

free-radical processes,4 and er-bond metatheses5 comprise most 
of the reactivity investigated. Reactions of alkanes with multiply 
bonded functionalities (e.g., LnM=X, X = O,6 NR,7 CR2,

8'9 etc.) 
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are rare yet constitute an important class of transformations related 
to the partial oxidation10 or functionalization" of unactivated C-H 
bonds. During the course of assessing the utility of Z-Bu3SiNH-

as an ancillary ligand related to /-Bu3SiO" (silox),12 a mode of 
intermodular C-H activation involving addition across a transient 
zirconium imide was discovered. 

Treatment of ZrCl4 with 3 equiv of /-Bu3SiNHLi, prepared 
from «-BuLi and /-Bu3SiNH2,

13 resulted in the formation of 
(/-Bu3SiNH)3ZrCl (1, eq I)14 in 88% yield. Alkylation15 of 1 with 
appropriate Grignard reagents yielded white crystals of the methyl, 
phenyl, and cyclohexyl (Cy) derivatives, (/-Bu3SiNH)3ZrR (R 
= Me, 2, 91%;16 Ph, 3, 32%;17 Cy, 4, 47%;18 eq 2)." 

Et2O 

ZrCl4 + 3 /-Bu3SiNHLi ——- (/-Bu3SiNH)3ZrCl (1) 

Et2O 

(/-Bu3SiNH)3ZrCl + RMgX - ^ * 

(/-Bu3SiNH)3ZrR (2) 
R = Me, 2; Ph, 3; Cy, 4 

Thermolysis of each alkyl complex (Scheme I) led to C-H bond 
activation. In benzene solution, (/-Bu3SiNH)3ZrCH3 (2) formed 
(/-Bu3SiNH)3ZrPh (3) concomitant with the release of CH4. In 
C6D6, 1.0 equiv of CH4 was generated, and the rate of reaction 
was first-order in 2 and zero-order in benzene (>40 equiv) as 
monitored by 1H NMR spectroscopy. The final product, (/-
Bu3SiND)3ZrC6D5 (3-(ND)3-^5), was deuterated in both the 
amido and phenyl positions. When (/-Bu3SiND)3ZrCH3 (2-(N-
D)3) was heated in C6H6,0.9 equiv of CH3D (>93% dx by NMR) 
was produced along with 3. The labeling and kinetics experiments 
are consistent with a rate-determining abstraction of an amido 
proton7 by the methyl group, leading to an intermediate imido 
complex, (/-Bu3SiNH)2Zr=NSi-Z-Bu3 (5).20 Subsequent addition 
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of a benzene C-H bond across the Z r = N linkage21 generates the 
phenyl species 3. Activation parameters (87.1-127.1 0C) asso
ciated with CH4 extrusion (96.6 0C, A:MeH = 1.06 (2) X 10"4 s"1) 
indicate substantial Zr-C bond breaking (A//* = 25.9 (4) 
Kcal/mol) in a relatively constrained transition state (AS* = -7 
(1) eu). The large kH/kD of 7.3 (4) associated with NH vs ND 
abstraction is similar to those observed for related reactions.8'22'23 

Intermediate 5 was trapped as a THF adduct, (J-Bu3SiNH)2-
(THF)Zr=NSi-J-Bu3 (6, >95%, 1H NMR; 81% yield),24 when 
the phenyl complex 3 was heated for 45 min in THF. 

The intermediacy of bis(amido)imido 5 is also consistent with 
the deuteration of amido protons during the course of C6D6 ac
tivation. During the thermolysis of (J-Bu3SiNH)3ZrCH3 (2) in 
C6D6, a single NH resonance of the phenyl derivative was observed 
(1H NMR) to grow in and then recede. By monitoring this signal, 
attributed to intermediates (J-Bu3SiNH)2(J-Bu3SiND)ZrC6D5 

(3-(ND)-rf5) and (J-Bu3SiNH)(J-Bu3SiND)2ZrC6D5 (3-(ND)2-^5), 
the rate constant for elimination of C6D5H from the latter can 
be determined (96.6 0C, k = 7.1 X \Qr* s"1) by using the methane 
extrusion rate above.25 Consistent with this observation is the 
rate of C6H6 elimination (96.7 0C, JtPhH = 2.26 (2) X 10"3 s"1) 
from (J-Bu3SiNH)3ZrPh (3) in C6D6, which is three times faster 
due to the statistical factor ascribed to the three amido protons. 
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Cyclohexane served as a useful inert solvent, since its secondary 
C-H bonds were not attacked, presumably for steric reasons.6 

Extended heating of (J-Bu3SiNH)3ZrCH3 (2) in C6H12 revealed 
the presence of a cyclometalation product,26'27 (J-

Bu3SiNH)2ZrN(H)Si-J-Bu2CMe2CH2 (7),28 which could be 
prepared in near quantitative yield via solid-state thermolysis (eq 
3). When (J-Bu3SiNH)3ZrCD3 (2-rf3) was heated in C6D12 with 

2.5 days, 120 "C 
(J-Bu3SiNH)3ZrCH3 • 

• ' , • ' • ' J solid state 

(J-Bu3SiNH)2ZrN(H)Si-J-Bu2CMe2CH2 + CH4 (3) 
7 

CH4 (3 atm) present, 2 was generated in addition to CD3H, 
indicative of methane activation by the transient imido species 
5. In C6D12, treatment of (J-Bu3SiNH)3ZrCy (4) with methane 
(3 atm) led to the quantitative formation (1H NMR) of (J-
Bu3SiNH)3ZrCH3 (2). Furthermore, the extrusion of CyH from 
4 in C6D6, leading to 3-(ND)3-^5, occurred about ten times faster 
(96.7 0C, kCyn = 1.04 (1) X 10"3 s"1) than the corresponding 
methane loss from 2. Considering steric influences, the cyclohexyl 
complex 4 may be destabilized relative to 2. Each alkyl species 
(2, 3, 4 and 7), when exposed to 3 atm of H2 in C6H12, was 
converted to the hydride (J-Bu3SiNH)3ZrH (8), characterized by 
a singlet at 8 9.60 in the 1H NMR and a Zr-H stretch at 1553 
cm"1 (j»(Zr-D) =1117 cm"1).29 Hydride 8 again resulted from 
trapping of the bis(amido)imido (5), since D2 treatment of pre
cursor 2 yielded CH4 and (J-Bu3SiNH)2(J-Bu3SiND)ZrD (8-
(ND)-d), which exhibited further deuteration of its amido sites 
upon further heating. 

Typically, an early transition-metal imido ligand forms a stable 
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Soc. 1979, 101, 7728-7729. (b) Simpson, S. J.; Turner, H. W.; Andersen, 
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NH, 1 H); 13C(1HI NMR 5 23.13 (SiC(CH3)3)3, 23.32 (C(CH3)2), 23.49 
(SiC(CH3)3)2, 30.17 (SiC(CH3)3)2, 31.04 (SiC(CH3)3)3, 35.34 (C(CH3)2), 
74.89 (CH2) (see ref 19). 

(29) 8: 1H NMR (C6D6) d 1.25 (s, f-Bu, 81 H), 4.87 (s, NH, 3 H), 9.60 
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J. Am. Chem. Soc. 1988, 110. 8733-8734 8733 

triple bond.30 In 5, pir-d7r bonds perpendicular to and in the 
pseudo-trigonal plane are possible, but the latter interaction may 
be weak due to the disparity in energy between the nitrogen 2p 
orbital and the Zr dp-hybrid that is characteristically a*. The 
resulting electron density on N combined with the electrophilicity 
of a three-coordinate zirconium center enables the polarization 
of a C-H bond, rendering it susceptible to activation. Ground-state 
steric arguments provide an explanation for CyH vs MeH ex
trusion rates, but the relatively rapid and reversible PhH loss from 
3 may be a consequence of transition-state stabilization by the 
Ph group. Theoretical investigations of 5 and further substrate 
and mechanistic studies focusing on the relationship of these 
activations to related heterogeneous processes utilizing metal 
oxides,10 such as the ammoxidation of propylene,31 are ongoing. 
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Iron is an essential element for the growth of microorganisms. 
In an oxidative environment, iron exists mainly as colloidal ag
gregates of ferric hydroxide, which microorganisms cannot take 
up. Many bacteria, fungi, and phytoplankton living in aerobic 

Figure 1. Stereoview of alcaligin. Selected bond lengths (A) and angles 
(deg), errors in last digit shown in parentheses. Lengths: 03-C2I, 1.235 
(7); 09-C18, 1.241 (8); 05-C16, 1.424 (7); 01-NI4. 1.383 (6); N4-
C18, 1.335 (8); N4-C25, 1.486 (8); NI4-C17, 1.346 (7), N14-C13, 
1.458(7). Angles: 02-C17-N14, 121.42 (50); 01-N14-C17, 118.12 
(43); C14-C13-C15, 111.34 (45); C25-N4-C18, 121.35 (49); 05-
C16-C25, 109.75 (44); 09-C18-N4, 121.17 (59); O3-C2I-C30, 119.69 
(54);01-N14-C13, 113.65 (41). 

Figure 2. Structure of alcalignin 

environments are known to excrete siderophores to chelate in
soluble iron.1 Siderophores are virtually specific for ferric iron, 
have low affinity for ferrous iron, and are not produced when iron 
is available to the microorganisms. Such chelators are generally 
classified into two main groups from their structures, e.g., sec
ondary hydroxamic acids and catechols.1 

Among hundreds of heterotrophic bacteria isolated from sed
iments of a lagoon near lake Biwa, Japan, a bacterium, Alcaligenes 
denitrificans subsp. xylosoxydans KN 3-1, giving a positive re
action for a bioassay for hydroxamate siderophore3 was selected. 
A. denitrificans KN 3-1 excreted the siderophore into the culture 
fluid of TTG medium (contained 5 g of Tripticase peptone (BBL), 
0.5 g of yeast extract (Difco), and 20 g of glucose (Nakarai) in 
1 L of tap water) after its mid-logarithmic growth phase over a 
2-week period. The final yield of the siderophore was ca. 1.3 mM 
in a 10-day-old culture fluid. A siderophore designated alcaligin 
was isolated and purified from 7- to 10-day-old culture fluid by 
the following procedure: the culture fluid was applied on Dowex 
1X4 (base form) and eluted with 2 M of NaCl. The eluate was 
adjusted to pH 7, saturated with ammonium sulfate, and extracted 
with the benzyl alcohol-ether procedure,4 and gel permeation 
chromatography on a BioGel P-2 column (2.6 X 90 cm) was 
performed with aqueous concentrate. The alcaligin fractions 
detected by adding FeCl3 solution were pooled, and the alcaligin 
was crystallized from water. The recovery of alcaligin through 
an overall procedure of isolation was about 20%, corresponding 
to about 100 mg of alcaligin from 1 L of the culture fluid. 
Contaminating iron was removed by a treatment with 8-
hydroxyquinoline,5 and the product was recrystallized from water. 

The results of FABMS spectrometry* and elemental analysis7 

indicated that a crystal of alcaligin contains two molecules of H2O 
and leads to an empirical formula of C,6H28N408-2H20. Ab
sorption spectrum of aqueous solutions of alcaligin shows max-
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B. Ann. Rev. Biochem. 1981, 50. 715-31. (c) Neilands, J. B. Adv. Inorg. 
Biochem. 1983,5. 137-166. (d) Lankford, C. E. CRC Crit. Rev. Microbiol. 
1973, 2. 273-331. (e) Hider, R. C. Struct. Bonding 1984, 58, 25-87. 
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(5) Keller-Schierlein, W. HeIv. Chim. Acta 1963, 46. 1920-1929. 
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